LHP Engineering Solutions

LHP Latest News Blog

A Cleaner Powertrain Design Driven by Stringnet Emission Standards

When Toyota launched the first Prius in 1997, many consumers probably didn’t imagine that just twenty short years later the electric and hybrid vehicle market would be accelerating faster than ever. With its launch in 2003, Tesla popularized the pure EV trend and has since been viewed as the catalyst transforming every major automotive OEM. Hybrid Electric Vehicles (HEVs), Plug-in Hybrid electric vehicle (PHEVs), and fully-electric vehicles (EVs) or Battery Electric Vehicles (BEVs) are taking over and continuing to improve year over year. According to the Electric Vehicle World Sales Database “122,000 plug-in vehicles have been delivered in the first half of 2018, an increase of 37 % compared to H1 of 2016. 53% were pure electric (BEV) and 47 % were plug-in hybrids.” OEMs such as Chevrolet, Toyota, and Honda, and Nissan are joining Tesla to record unprecedented growth rates and volumes for electric vehicle sales.



 Ev Volume Sales


Source: http://www.ev-volumes.com/country/usa/

Emissions Standards Drive PHEV/EV Development

The driver of electric and hybrid vehicle development is a major increase in stringent government emissions regulations. In 2011, the Obama administration announced an agreement with the thirteen largest automakers to increase the average fuel economy to 54.5 miles per gallon by the year 2025. The agreement resulted in new Corporate Average Fuel Economy (CAFE) regulations for model years between 2017-2025. 


With cleaner emissions in mind, hybrid vehicles are rising in popularity. HEVs offer a cleaner, redesigned powertrain and unique advantage in efficiency improvements such as;


  1. Environmentally Friendly: The twin powered propulsion system cuts fuel consumption and conserves energy.

  2. Regenerative Braking System: In a regenerative brake system, the wheels turn the motor, and the motor acts as a generator to recharge the battery. By putting the energy back into the battery instead of wasting it through

    conventional braking, the energy can be reused to start the vehicle moving again.

  3. Energy Savings: HEVs get better gas mileage than conventional powertrains because they are able to recover energy from the car’s motion and reuse it to accelerate the car after it stops.

  4. Comparative manufacturing costs: Shifts in manufacturing costs have made HEVs a competitor to traditional competing internal combustion technologies.


The shift in Testing needs for BEV/PHEV/EV testing


As the EV market continues to rise, the need for more reliable automated testing methods becomes greater. The industry needs to adapt to the changing architectures of vehicle powertrains and the ever-more rigorous testing requirements that OEMs have for meeting customer, regulator and investor demands. The newly redesigned powertrain is not compatible with the traditional testing models of internal combustion engines.


 powertrain design


Source: https://www.consumer.org.nz/articles/a-guide-to-electric-vehicles

Below is a complete breakdown of the different electric and hybrid vehicles LHP has redefined testing for (EVs, HEVs, PHEVs)


Electric Vehicle (EV)

Electric Vehicles are propelled by a battery and motor that can be re-charged at a battery plug-in station. EVs do not have an internal combustion system, eliminating the need for petroleum.

Hybrid Electric Vehicle (HEV)

Hybrid Electric Vehicles are powered by conventional or alternative fuels as well as electric power stored in a battery. The battery is charged through regenerative braking and the internal combustion engine. In other words, the battery captures energy normally lost during breaking by using the electric motor as a generator.

Plug-in Hybrid Electric Vehicle PHEV (PHEV)

Unlike a traditional hybrid or electric vehicle, a plug-in electric vehicle combines the benefits of a traditional hybrid and a battery electric vehicle or BEV. Plug-in hybrids have larger batteries and a greater driving range due to the regenerative breaking and other energy saving components. When the battery runs out of charge the engine kicks in, although not all plug-in hybrids use their engines the same way. Some are only activated after the battery drains and some kick in when extra power is needed even if there is charge in the battery.



The shift is uncovering HEV alternatives, such as the 48-volt mild-hybrid platform which experts suggest is natural middle ground suitable for handling the power start-stop motors, and a variety of accessories ranging from supercharging, power steering, power brakes, water pumps, radiator cooling, and air conditioning.


How LHP is addressing the testing shift:

  1. Power Electronics- LHPTS offers a flexible test system that can test to numerous standards for a variety of power electronics tests and help suppliers ensure compliance to each original equipment manufacturer’s (OEMs) specifications prior to delivery.

  2. Power Inverters - With a Power-HIL (P-HIL) system, such as an LHPTS system using an open architecture, researchers and engineers can test traction inverters at full power levels.

  3. Battery Management Systems (BMS) - LHP offers battery packs and hardware-in-the-loop (HIL) test systems with battery simulation to use for BMS testing.

  4. Range Extenders- Engineers at LHPTS have built engine control systems for R&D labs developing electric generators that efficiently convert a variety of fuels into electric energy that can be used as EV range extenders.



To learn mosre baout stringint powertrain designs, dowload the latest whitepaper: Optimizing Propulsion System Performance with Integrated Powertrain Control Solutions


New Call-to-action

Related Articles

Related Downloads


Learn more about how you can prepare for the shifting automotive industry by downloading our Whitepaper: Adapting to New Testing Needs in the Shifting Automotive Industry  


Press CTRL + D to bookmark this page.Press Command/Cmd + D to bookmark this page. / Print

Most Recent

LHP Engineering Solutions (LHP), a global engineering services provider and technology integrator within the automotive industry, announced that David Glass, LHP’s CEO was recognized in the 2018 Best Of Comparably Awards for ‘Best CEO in 2018’ for small to mid-sized companies. CEO’s who were honored include leaders from Microsoft, Google, Tesla, and Amazon.

Back in the early sixties, a car’s intake valve would open for a specific duration during a predetermined time in the engine’s four-stroke cycle. It was not an especially flexible system, but in the early days of motor vehicles, this wasn’t a big problem. In the engines of those days, idle and operating RPMs were often quite similar. However, as vehicles advanced in complexity, the range of potential RPMs widened, leading to greater compromises in systems with static valve timing. The need for a better solution lead to the rise of variable valve timing (VVT).

LHPU, the training division of LHP Engineering Solutions (LHP), and Ivy Tech Community College, Indiana’s largest public postsecondary institution, are proud to announce a partnership with the Indiana Department of Veterans’ Affairs (IDVA). This partnership will assist American veterans with hands-on training and career development in the automotive space. LHPU’s mission is to grow the worldwide talent pool of highly qualified controls engineers. In doing so, since its inception in 2013, LHPU and Ivy Tech have helped bridge the gap between the classroom and the workplace by delivering hands-on boot camp training to over 600 students and engineering professionals.